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Abstract

On a distributedmemory parallelcomputer, the complete exchange (all-to-allper-

sonalized)communication pattern requireseach of n processorsto send a different

block of data to each of the remaining n - 1 processors.This pattern isat the heart

ofmany important algorithms,most notably the matrix transpose.

For a circuitswitchedhypercube ofdimension d (n = 2a),two algorithmsforachiev-

ing complete exchange are known. These axe (I)the Standard Exchange approach that

employs d transmissionsofsize2_-I blockseach and isusefulforsmall block sizes,and

(2) the Optimal CircuitSwitched algorithm that employs 2d - i transmissionsof 1

block each and isbest forlargeblock sizes.

A unifiedmultiphase algorithmisdescribedthat includesthesetwo algorithmsas

specialcases.The complete exchange on a hypercube ofdimension d and block sizem
k

isachievedby carryingout k partialexchanges on subcubes ofdimension di,_i=Idi = d

and effectiveblock sizem_ = m2 a-_. When k --d and alldi = 1,thiscorresponds

to algorithm (I) above. For the case of k = 1 and dl - d3 thisbecomes the circuit

switchedalgorithm (2).Changing the subcube dimensions d_variesthe effectiveblock

sizeand permits a compromise between the data permutation and block transmission

overhead of (1) and the startupoverhead of (2).

For a hypercube ofdimension d,the number ofpossiblecombinationsofsubcubes is

p(d),the number of partitionsof the integerd. This isan exponentialbut very slowly

growing function(e.g.p(7)= 15,p(I0)= 42) and itisfeasibleto enumerate overthese

partitionsto discoverthe bestcombination fora given message size.

This approach has been analyzed for,and implemented on, the InteliPSC-860 cir-

cuitswitched hypercube. Measurements show good agreement with predictionsand

demonstrate that the multiphase approach can substantiallyimprove performance for

block sizesin the 0-160 byte range. This range,which corresponds to 0-40 floating

point numbers per processor,iscommonly encounteredin practicalnumeric applica-

tions.The multiphase techniqueisapplicableto allcircuit-switchedhypercubes that

use the common 'e-cube'routingstrategy.

*Research supported by the National Aeronautics and Space Administration under NASA contract NAS1-

18605 while the author was in residence at the institute for Computer Applications in Science & Engineering,

Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23665-5225.





1 Introduction

On a distributed memory parallel computer system, the complete exchange

communication pattern requires each of n processors to send a different m

byte block of data to each of the remaining n-1 processors. This communica-

tion pattern arises in many important applications such as matrix transpose,

matrix-vector multiply, 2-dimensional FFTs, distributed table look-ups etc.

It is also important in its own right since, being equivalent to a complete

directed graph, it is the densest communication requirement that can be im-

posed on an interconnection network. The time required to carry out the

complete exchange is an important measure of the power of a distributed

memory parallel computer system.

There are two algorithms for complete exchange on circuit switched hy-

percubes like the InteI iPSC-2, InteI iPSC-860, and Ncube-2. The first is

the Standard Exchange algorithm: for an d-dimensional hypercube, this al-

gorithm uses d transmissions of 2 g-I blocks each. On circuit switched ma-

chines this algorithm is useful for small block sizes (< _ 200 bytes). The

second is the Optimal Circuit Switched algorithm, that uses 2 d - 1 transmis-

sions of 1 block each: the transmissions are carefully scheduled to avoid link
contention.

We describe in this paper a unified multiphase algorithm that carries out

the complete exchange on a hypercube of dimension d as set of k "partial"

exchanges on subcubes of dimensions di, Y_=ldi = d with effective block size

ml = m2 d-a_. The motivation here is to reduce the time required for the

complete exchange by compromising between the data permutation and block

transmission overhead of the Standard Exchange algorithm and the startup

overhead of the Optimal algorithm.

For a hypercube of dimension d there are p(d) possible generalized algo-

rithms, where p(d) is the number of partitions of the integer d. Although

p(d) is an exponential function, it grows very slowly. For example, p(7) - 15,

p(10) = 42, and p(20) = 672. It is _hus qui_e feasible _o enumerate over all

partitions to find the algorithm best suited for a given block size.

For the case where k = d and each di = 1, the unified algorithm degen-

erates into the Standard Exchange algorithm. When k = 1 and dl = d, it

becomes the Optimal algorithm. The unified algorithm thus includes the two

known algorithms as special (although extreme) cases.

Measurements on the Intel iPSC-860 hypercube show that the multiphase



approach can substantially improve performance for block sizes in the 0-160

byte range. This range corresponds to 0-40 floating point numbers and is

commonly encountered in practical numeric applications. While our mea-

surements are for the Intel iPSC-860, our techniques are applicable to all

circuit switched hypercubes that use the common 'e-cube' routing strategy.

The older Intel iPSC-2 and the Ncube-2 are examples of such machines.

In Section 2 of this paper we describe the essential features of circuit

switched hypercubes. We discuss the complete exchange pattern in Section

3. Section 4 describes the two previously known algorithms for the complete

exchange.

The major theoretical results of this paper are presented in Section 5.

We introduce the unified multiphase algorithm with an example and then go

on to describe partial exchanges. This Section concludes with a presentation

of the general algorithm. In Section 6 we describe how an enumeration ap-

proach can be used to obtain the optimal set of subcube dimensions. Details

of implementation on the iPSC-860 are given in Section 7. In Section 8 we

discuss our observed timings and compare them with predictions. We con-

clude with a discussion of our results and projections for future research in
Section 9.

2 Circuit Switched Hypercubes

The interconnection network of a 32 node hypercube is shown in Figure

1. The labeled vertices hanging from each vertex of the network represent

processors of the hypercube. Two processors in the network are connected if

and only if the binary representations of their labels differ in exactly one bit.

Circuit-switched communications differentiate the newer hypercubes, such

as the !ntel iPSC-2 and iPSC-860, and the Ncube-2 from older machines.

In these machines, a dedicated path is set up between two processors when

communication is desired. Messages then flow through this path without

involving intervening processors. The path between source and destination

is determined by the 'e-cube' routing algorithm: starting with the right hand

side of the binary label of the source processor, we move to the processor

whose label more closely matches the label of the destination processor. This

process is repeated until the destination is reached.

The user has no control over how a message is routed between two proces-



sors. The fixed routing algorithm completely determinesthis path. Because

of this, we can encounter edge and node contention. Edge contention is the

sharing of an edge (i.e. a communication link) by two or more paths. Simi-

larly, node contention is the sharing of a node.

Figure 1 illustrates paths from 0 to 31 (solid), 2 to 23 (dashed) and 14

to 11 (dotted). The lengths of these paths (the distance between source

and destination) are 5, 3 and 2 respectively. The paths 0 _ 31 and 2

23 share the edge 3-7, while the paths 0 _ 31 and 14 --_ 11 share node

15. Measurements on the iPSC-860 [2] reveal that edge contention has a

disastrous impact on communication time, while node contention has no

measurable effect.

The Intel iPSC-2 and IPSC-860 are among the first commercial exam-

pies of circuit-switched machines. Since circuit switching provides very fast

communications, it is generally felt that it eliminates most, if not all, of the

inefficiencies caused by communication overhead. In particular, it is a com-

mon belief that programmers can ignore the details of the interconnection

network, since communication overhead is negligible. This is a mistaken be-

lief since, as we shall see later in this paper, very careful consideration of the

interconnection network is necessary if the full power of the machine is to be

utilized.

3 The Complete Exchange Pattern

The Complete exchange communication pattern requires each of n processors

of a parallel machine to send a different block of data to each of the remaining

n - 1 machines. This pattern arises when transposing a matrix of size n x n

blocks that is mapped onto an n processor system (Figure 2). As shown in

the bottom part of this figure, the transpose requires each processor to send 1

block to each of the remaining n- 1 processors. The resulting communication

pattern is a complete directed graph of n nodes.

The specific mapping of an n × n matrix onto an n processor system

shown in Figure 2 is required when using the Alternating Directions Implicit

(ADI) method for solving partial differential equations [5, 10]. This method

requires access to the matrix by rows and by columns in successive phases,

necessitating the heavy use of a transpose procedure. Similar requirements

arise in matrix-matrix and matrix-vector multiplication, when the matrices
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Figure 1: Interconnection network of a 32 node hypercube.
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are mapped as described above.

The complete exchange pattern also arises in certain implementations of

the 2-D FFT [11] and in distributed table lookup[12]. Being equivalent to

a complete directed graph of n nodes, this pattern is of interest in its own

right, since it is the densest communication requirement that can be imposed

on an interconnection network. The time required to execute the complete

exchange pattern is an upper bound for the time required by any pattern

(which must necessarily be a subset of the complete directed graph).

Because of its widespread applications, it is worthwhile to investigate the

time required to execute this pattern and to develop fast procedures for it,

as we proceed to do in the following Sections.

4 Algorithms for Complete Exchange

We shall now discuss the two algorithms for complete exchange that are

currently in use. Of these, Standard Exchange[7] is well known, while the

Optimal Circuit Switched algorithm[13, 15] is a recent development. The

former requires only log n transmissions of n/2 blocks each and has better

performance for small block sizes. The latter uses n - 1 transmissions of 1

block each and has better performance for large block sizes. Both algorithms

completely avoid edge contention. The Exchange algorithm does this by com-

municating over unit distances. The Optimal algorithm avoids contention by

using a carefully contrived schedule of transmissions.

4.1 The Standard Exchange Algorithm

The Standard Exchange algorithm [7] uses log n transmissions of size n/2

blocks each. All transmissions are along paths of length 1, thus there is

no possibility of contention. This algorithm incurs overhead because of the

shuffling of blocks and because it transmits _ log n blocks instead of the

optimal number, n - 1. It is, nevertheless, competitive for small block sizes.

This is because there are only log n transmissions (as opposed to n- 1 for the

algorithm discussed below) and thus the overhead of starting up a message

is not incurred as frequently.



procedure StandardA_xchange;
begin

for j = d - 1 downto 0 do

begin

if (bit j of mynumber = 0) then

message = blocks n/2 to n - 1
else

message -- blocks 0 to n/2 - 1;

send_message_to_processor((mynumber) ® ( 2J) );

shuffle blocks;

end;

end;

4.2 The Optimal Circuit Switched Algorithm

The challenge in designing algorithms for circuit switched machines with fixed

routing is to organize communications in such a way as to avoid or minimize

edge contention. In the case of complete exchange, each processor must send

its ith block to processor i, but is free to schedule its transmissions in order

to avoid edge contention. There are many possible schedules that completely

avoid contention. We will use the schedule developed by Schmiermund and

Seidel[13]. This schedule has the property that the entire communication

pattern is decomposed into a sequence of pairwise exchanges. This property

is very useful when implementing complete exchanges on the Intel iPSC-2 and

iPSC-860 because of certain idiosyncrasies of their communication hardware,

as we shallsee in Section 7. Other schedules are possible--some ofthese have

advantages over certainranges of block size.These are discussed further in

[3].
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procedure Optimal_Circuit_Switched;

begin

for i = 1 to n- 1 do

send_block_to_processor((mynumber) @ (i) );

end;

4.3 Analysis of Run Times

Let us define the following performance parameters of our hypercube.

Description Units

_" transmission #sec. per byte

p data permutation #sec. per byte

startup (latency) #sec.

6 distance impact #sec. per dimension

The time taken by a message of size rn bytes to cross d dimensions is

thus )_ + _'m + 6d; the time to shuffle rn bytes of data within memory is prn.

Expressions for the two algorithm are as follows.

In the Standard Exchange algorithm d transmissions of rn2 d-1 bytes each

over dimension 1, take d(_ + rm2a-x + 6) seconds. There are d shuffles on 2 d

blocks of rn bytes each, taking d(prn2 a) seconds. The total time is thus

t.(m, a) = d(A+ + 2p). 2a-' + S). (1)

In the case of the Optimal Circuit Switched algorithm there are 2a - 1

transmissions of blocks of rn bytes. At each transmission step, all pairs

of processors are at identical distances from each other. Thus the overall

distance impact equals the average path length in a hypercube, which is

d2n-I/(2d -- 1) The total time is

d2 d- 1

to(re, d) = (2a - 1)($ + rm + 62-g=-]-_1 ). (2)



The Standard Exchange algorithm is better than the Optimal Circuit

Switched algorithm whenever

(2 d- d- 1)A + d(2 d-'- 1)6
m<

(d2 d-1 - 2 d + 1)r + d2dp

For a hypothetical machine of dimension 6 with 7"= p = 1, _, = 200 and

5 = 20, the Standard Exchange algorithm is better for blocks of size less than

30.

5 The Multiphase Approach

We shall now describe a multiphase approach in which the complete exchange

is carried out as a set of two or more "partial" exchanges. As we shall see, this

permits us to use the Circuit Switched algorithm for block sizes for which it is

ordinarily inefficient and provides very significant performance gains. In fact

our multiphase approach is a unified algorithm that includes the Standard

Exchange and Circuit Switched algorithms as special cases.

5.1 Motivation and Example

Given that the Standard Exchange algorithm is competitive for small message

sizes and the Circuit Switched algorithm performs best at large message sizes,

is there any way we can combine these algorithms to obtain performance

better than either? This is indeed possible, as demonstrated below. Recall

that we have n = 2a nodes on our hypercube. The normal complete exchange

algorithm is based on the exchange of sets of n blocks per processor. We

can envisage a "partial" exchange that is carried out simultaneously on all

subcubes of dimension dl < d but based on n = 2 d blocks (not 2 d' blocks)

per processor. By carefully permuting our data blocks, we can then execute

another partial exchange on all subcubes of dimension d2 = d -dl, again

with 2 d blocks and not 2d_ blocks. The end result will be that a complete

exchange on the hypercube of dimension d is carried out in two phases, using

messages that are longer than the messages that would have been used if a

single phase approach had been employed. What we have achieved here is an

effective "lengthening" of messages that lets us take advantage of the Circuit

Switched algorithm for message sizes for which it is normally unsuited. The

9
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Figure 3: A Multiphase Exchange on a hypercube of dimension 3. The

firstrow gives the binary labelsof processors. Data blocks are arranged in

columns. The firstpartialexchange is on the 2 subcubes of dimension 2

determined by bits2 and I;data are moved in superblocks of size2. This is

followed by a 2-shu_e. The second partialexchange ison the 4 subcubes of

dimension 1 determined by bit 0; data are moved in superblocks of size4.
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price paid is the overhead of data permutation, which is required to align

blocks to that they finish up in the correct position. Figure 3 illustrates this

approach for a dimension 3 hypercube.

An example. Suppose we have to carry out the complete exchange

of block size 24 on our hypothetical 6-dimensional hypercube (Section 4.3)

with T = p = 1,A = 200 and 6 = 20. We have seen that the Standard

Exchange algorithm is best on this machine for blocksizes of less than 30

bytes. For 24 bytes the Standard algorithm takes 15144psec. Let us see what

happens if we carry out this exchange in two phases of dimension 2 and 4

respectively. The first phase on dimension 2 subcubes with an effective block

size of 24 x 2 s-2 = 384 bytes takes 1832#sec. using the Circuit Switched

algorithm. The next exchange on dimension 4 subcubes with effective block

size 24 x 2s-* = 160 bytes takes 6040#sec., again using the Circuit Switched

algorithm.

To this must be added the overhead of shuffling data, which is prn2 a per

phase. This totals 3072#sec. The total time for the two phase approach is

thus 10944psec., which is substantially faster than the Standard algorithm.

5.2 General Algorithm

A complete exchange on a hypercube of dimension d with n = 2d processors

and block size rn is done using a set of partial exchanges _D = {dl, d2,..., dk),

where each d_ specifies a subcube dimension. Obviously IVl = k, 1 ___k, and

_=ldi = d.

The jth partial exchange is done on the set of subcubes determined by
bits J • i_i=ld, - dj to Ei=ldi of the hypercube node labels.

In a partial exchange 2d blocks of size m each axe exchanged, regardless of

cube dimension. Hence the time required for the ith phase is obtained from

expression (1) or (2) with m replaced by m2 d-d_ bytes. This is the effective

block size. The multiphase algorithm is as follows.

11



procedureMultiphase;

{ d: dimension of the hypercube

k: number of phases (subcubes) in partition :D

di: dimension of the ith subcube in partition :D

start:starting bit of subcube label

stop: ending bit of subcube label }

begin

start = d- 1;

fori=lto kdo

{Partial exchange}

begin

stop = start -- di+ 1;

compute effective blocksize;

for j = 1 to (2 "tart-'t_+l - 1) do

send_effective_block_to _processor((mynumber) @ (j 2 °t_r ));

shuffle blocks di times;

start = stop- 1;

end;

end;

When k = d, all dis are 1. In this case the outer i loop is executed k times

with start = stop = d - 1, d - 2,..-, 1,0. The inner j loop is executed only

once for each i. In this case Multiphase degenerates into Standard Exchange.

When k = 1 and thus dl = d, the outer loop is executed only once. stop

always equals 0 and, in the inner loop, j takes on the values 1, 2,-.., 2 d - 1

and thus Multiphase becomes Optimal Circuit Switched.

6 Minimizing the Execution Time

The theory developed in Section 4 assures us that multiphase exchanges can

be useful; the general algorithm of Section 5 tells us how the partial exchanges

are to be performed. It remains to discuss the problem of determining the

optimal set of subcube dimensions and algorithms.

Given a hypercube of dimension d, there are many different combinations

12



of subcubedimensionsand algorithms that canbe used to obtain a multi-
phasealgorithm.* The optimal set canbe obtained by enumeratingover all
the partitions of d. For each partition 7) = {dl, d2,..., dk} we select the best

algorithm at each phase. This procedure is not as expensive as it appears at

first sight, since we are enumerating over the partitions of hypercube dimen-

sion and not size. It is a classical result [1, 6] that the number of partitions

of an integer d is

v(d)~ 4v d

Exact values can be calculated using the recurrence

v(d)=
(l + v'-f4_ )/ 8 1

E (-1)i+_p(d- _j(3j + 1)).
j=l

The following table enumerates the values of practical interest. We can

see that for a thousand node hypercube (the largest that was commercially

available in 1990) we need to enumerate only 42 partitions--a trivial number.

Even for a million node hypercube, the enumeration of 627 partitions is

quite viable, especially since it needs to be done only once and the optimal

combination stored for repeated future use.

p p(d) p p(d) p p(d) p p(d)

5 7 10 42 15 1/6 20 627

7 Implementation on the iPSC-860

We have implemented the Multiphase algorithm on the Intel iPSC-860 hy-

percube. In this Section we discuss the salient features of our implementation

and derive expressions for the predicted run times.

*The sequence of dimensions is unimportant, as long as the shuffles are carried out
correctly.
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7.1 Message Types

There are two message types (selectable by the programmer) on the iPSC-

860[4]. A messages of the FORCED type is discarded upon arrival if no receive

has been posted for it. A message of the UNFORCED type is stored in a system

buffer if it arrives and no receive has been posted for it. The performance

of both types is similar for messages of size 0-100 bytes. Beyond 100 bytes,

an UNFORCED message is preceded by the exchange of 'reserve-acknowledge'

messages that cause space to be reserved in the destination. This causes

substantial overhead[2].

When the intercommunication pattern is fully known before runtime, as

is the case for complete exchange, suitable receives can be posted at all

processors before communication begins, and the more efficient FORCED type

used. We have done so in our implementation.

7.2 Pairwise Synchronized Exchange

This issue arises because of an idiosyncrasy of the iPSC-860's communication

hardware. A receive and a transmit occurring nearly simultaneously at a

processor can proceed concurrently, while a short delay causes them to be

carried out serially. This issue has been researched in detail by Seidel et al. [9,

13, 14]. They have shown that two processors can execute a pairwise exchange

concurrently if the transmissions start simultaneously. This synchronization

can be achieved by using a global synchronization before each exchange, but
that is an extremely expensive solution.

It has been shown that a pairwise exchange is guaranteed to proceed con-

currently if the two processors involved first exchange a pair of zero byte

"pairwise synchronization" messages. The time for this pairwise synchro-

nization is far less than the time for global synchronization and is negligible

for moderate to large messages.

7.3 Global Synchronization

When using FORCED message types it is essential for each processor to post

receives for all expected messages in the procedure at the very beginning, and

to carry out a global sync_ro-n_t]on after this. O_ssion of t-he- (-expensive)

global synchronization step is fatal as it leads to messages arriving before

14



their corresponding receives have been posted and thus being discarded by

the operating system. When using UNFORCED messages, itispossibleto on_t

this global synchronization step since these messages are stored by the op-

erating system until the required receive has been posted. We have found

that FORCED types give better performance, despite the overhead of global

synchronization.

We use FORCED types for "pairwise synchronization" messages as well as

for the actual data transfers. We post all receives for all messages before a

global synchronization. This results in better performance than the method

proposed in [13] which does not use global synchronization.

7.4 Measured Performance Characteristics

As discussed in Section 4.3, the time for a message of size m bytes to

cross d dimensions is )_ + 7"ra + 6d. When messages of the FORCED type

are used and all receives are posted before transmission begins, the values

), and r are 95.0#sec. and 0.394psec./byte, respectively. The value of g is

10.3#sec./dimension. The A for a zero byte message is significantly bet-

ter, being 82.5/_sec. When using these measured parameters to predict the

time required by the multiphase algorithm, we must remember that each

pairwise exchange is preceded by an exchange of zero byte synchroniza-

tion messages. Thus we have the effective values of )_ = 177.5_tsec. and

g = 20.6_tsec./dimension.

The time for global synchronization on a cube of dimension d has been

measured at 150d#sec. The time for data permutation (shuffling) is p =

0.54#sec./byte. This is considerably slower than the time to transmit data
because of the substantial overhead of computing the permutation. This

occurs because we have implemented our algorithm in C using a compiler that

does not take many of the powerful features of the iPSC-860 into account.

It should be possible to significantly improve this figure by using assembly

language and/or an optimizing compiler. This will change our final measured

timings somewhat, but will not affect our overall approach, which is valid

even if the cost of permutation is zero.

The time for a partial exchange on a subcube (Section 5.2) of dimension

d_ within a hypercube of dimension d is thus

15



d. d) =
di 2a_-1

(2 a_-I - 1)(177.5 + 0.394m + 20.6_--] + 0.54.2am) + 150d. (3)

When di = d, the shuffling can be omitted altogether, since d-shuffles of

2a blocks are equivalent to the identity permutation.

8 Evaluation of Multiphase Algorithm

We now present measured timings for the Multiphase algorithm on Intel

iPSC-860 hypercubes of dimension 5,6 and 7. Our timings are presented

as plots in Figures 4, 5 and 6 where we indicate each combination by its

set of subcubes. Thus for dimension 5, the Standard Exchange algorithm

is denoted by {1, 1,1,1,1} and the Optimal Circuit Switched Algorithm by

{5}. For dimensions 5, 6 and 7, the number of combinations are 7, 11 and

15. Although we have measured the performance of all combinations, to

avoid congested plots we show only those combinations that form the hull

of optimality (i.e. only the best combination for every blocksize). The only

exception is the Standard Exchange Algorithm ({1, 1,...}), which is shown

for purposes of comparison, even though it is never optimal on the iPSC-860

for dimensions 5-7. Dashed lines on our plots indicate predicted values and

solid lines show actual measurements.

As is to be expected, the Optimal Circuit Switched algorithm is always

optimal for large enough block size. When d = 5 (Figure 4) the combina-

tion {2, 3} is optimal for block sizes less than 100 bytes. For d = 6, three

combinations are optimal: {2,2,2}, {3,3} and {6}. The last of these is op-

timal for message sizes beyond about 140 bytes. The first is optimal only

for extremely small sizes. Figure 6 shows the plots for the largest iPSC-860

available (d = 7). In this case we again have three optimal combinations

{2,2, 3}, {3,4} and {7}, with {7} optimal beyond 160 bytes and {2,2,3} op-

timal for 0 to 12 bytes. For d = 7, the combination {3, 4} leads to a factor

of two improvement over both the Standard Exchange and Optimal Circuit

Switched Algorithms at blocks of 40 bytes.

In all cases there is good agreement between the predicted and observed

run times. However the agreement is not perfect, since the performance
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characteristicsof the real iPSC-860aremuchmore complexthan this simple
model. Neverthelessour model is goodenoughto provideuswith algorithms
that can leadto substantial measuredimprovement that is of great practical
relevance,given the ubiquity of the completeexchangepattern.

9 Conclusions

Circuit switched machines have only recently made an appearance as com-

mercial products. These machines provide powerful communication mecha-

nisms but, as the results of this paper show, very careful algorithm design is

required to optimize performance.

We have addressed the problem of implementing the complete exchange

(all-to-all personalized) pattern and have described a multiphase algorithm

that unifies the two previously known algorithms and yields performance

better than either over some ranges of message sizes. Similar techniques

can be applied to other communication patterns. In particular, it will be

interesting to see how the performance of the all-to-all broadcast, one-to-all

personalized and one-to-all broadcast patterns[8] can be improved. Since the

Complete Exchange is the most demanding communication pattern, the time

taken by our multiphase algorithm is an upper bound on the time required by

any of these patterns, in fact of any communication requirement. However it

is challenging to exploit the structure of the simpler patterns so as to obtain

even better performance.

An open theoretical issue is whether we can develop an ei_cient multi-

phase algorithm for a given arbitrary communication requirement (i.e. an

arbitrary directed graph). A practical issue of interest is to evaluate the

performance of the multipheme approach on the Ncube-2 circuit switched

hypercube.
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The hull of optimality is made up of two faces, corresponding to the partitions

{2,3} and {5}. The Standard Exchange algorithm {1,1,1,1,1} is shown only

for comparison-it is never optimal.
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Figure 6: Performance of the Multiphase algorithm for a 128 node (d = 7)
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{7}. For block size 40 bytes, the time taken by the Standard Algorithm

{1,1,1,1,1,1,1} equals the time taken by the Optimal Circuit Switched Al-

gorithm {6} and is 0.037 sec. The time taken by the Multiphase algorithm
{3,4} is 0.016 sec., which is more than twice as fast.
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